Multilevel hybrid split-step implicit tau-leap
نویسندگان
چکیده
منابع مشابه
Hybrid Chernoff Tau-Leap
Markovian pure jump processes model a wide range of phenomena, including chemical reactions at the molecular level, dynamics of wireless communication networks, and the spread of epidemic diseases in small populations. There exist algorithms such as Gillespie’s stochastic simulation algorithm (SSA) and Anderson’s modified next reaction method (MNRM) that simulate a single path with the exact di...
متن کاملError Analysis of tau-leap simulation methods
We perform an error analysis for numerical approximation methods of continuous time Markov chain models commonly found in the chemistry and biochemistry literature. The motivation for the analysis is to be able to compare the accuracy of different approximation methods and, specifically, Euler tau-leaping and midpoint tau-leaping. We perform our analysis under a scaling in which the size of the...
متن کاملNew Hybrid Cascaded Multilevel Inverter
This paper proposes a single-phase five-level inverter with a modified pulse width-modulated (PWM)control scheme. The modified pulse width-modulation technique is developed to reduce switching loss.Also, the proposed multilevel inverter can reduce the requirement of power switches compared to aconventional cascaded multilevel inverter. The modes of operation, control signals, and operatingprinc...
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملAdaptive explicit-implicit tau-leaping method with automatic tau selection.
The existing tau-selection strategy, which was designed for explicit tau leaping, is here modified to apply to implicit tau leaping, allowing for longer steps when the system is stiff. Further, an adaptive strategy that identifies stiffness and automatically chooses between the explicit and the (new) implicit tau-selection methods to achieve better efficiency is proposed. Numerical testing demo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2016
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-016-0158-z